deltin51
Start Free Roulette 200Rs पहली जमा राशि आपको 477 रुपये देगी मुफ़्त बोनस प्राप्त करें,क्लिकtelegram:@deltin55com

cat 2020 slot 1 quant

deltin55 Yesterday 20:30 views 48


Title: CAT 2020 Slot 1 Quantitative Ability Section - Indian Game Solutions


Introduction:
The Quantitative Ability section of the CAT (Common Admission Test) is a crucial component for many MBA aspirants. In this article, we will discuss the solutions to the quantitative ability questions from the CAT 2020 Slot 1, specifically focusing on the Indian game problems.


Question 1:
Three friends A, B, and C play a game. A throws a fair die, and if the number obtained is 6, then B plays; otherwise, C plays. B wins if he throws a 6 on his turn, and C wins if he throws a 5 on his turn. Find the probability that C wins the game.


Solution:
Let's denote the probability of A winning as P(A), the probability of B winning as P(B), and the probability of C winning as P(C).


P(A) = (1/6) * P(B) + (5/6) * P(C)


Since A wins if B wins, we have:
P(A) = P(B)


Substituting P(A) in the first equation, we get:
P(B) = (1/6) * P(B) + (5/6) * P(C)


Rearranging the equation, we have:
(5/6) * P(C) = (5/6) * P(B)


Dividing both sides by (5/6), we get:
P(C) = P(B)


Now, let's find the probability of B winning:
P(B) = (1/6) * (1/6) + (5/6) * (1/6) * P(C)
P(B) = (1/36) + (5/36) * P(C)


Substituting P(B) = P(C) in the equation, we get:
P(C) = (1/36) + (5/36) * P(C)


Rearranging the equation, we have:
(5/36) * P(C) = (1/36)


Dividing both sides by (5/36), we get:
P(C) = (1/5)


Therefore, the probability that C wins the game is 1/5 or 0.2.


Question 2:
A game consists of 3 red balls, 4 blue balls, and 2 green balls. 3 balls are drawn at random without replacement. Find the probability that at least 2 balls are drawn from the same color.


Solution:
To find the probability of at least 2 balls being drawn from the same color, we can calculate the probability of drawing 3 balls of the same color and the probability of drawing 2 balls of the same color and 1 ball of a different color.


Let's denote the probability of drawing 3 balls of the same color as P(3 same color) and the probability of drawing 2 balls of the same color and 1 ball of a different color as P(2 same, 1 different).


P(3 same color) = (3/9) * (2/8) * (1/7) + (4/9) * (3/8) * (2/7) + (2/9) * (3/8) * (2/7)


P(2 same, 1 different) = (3/9) * (2/8) * (4/7) + (4/9) * (3/8) * (2/7) + (2/9) * (3/8) * (3/7)


Now, let's calculate the probabilities:


P(3 same color) = (3/9) * (2/8) * (1/7) + (4/9) * (3/8) * (2/7) + (2/9) * (3/8) * (2/7)
P(3 same color) = (1/84) + (24/504) + (12/504)
P(3 same color) = (1 + 24 + 12) / 504
P(3 same color) = 37/504


P(2 same, 1 different) = (3/9) * (2/8) * (4/7) + (4/9) * (3/8) * (2/7) + (2/9) * (3/8) * (3/7)
P(2 same, 1 different) = (24/504) + (24/504) + (18/504)
P(2 same, 1 different) = (24 + 24 + 18) / 504
P(2 same, 1 different) = 66/504


Now, let's find the probability of at least 2 balls being drawn from the same color:


P(at least 2 same color) = P(3 same color) + P(2 same, 1 different)
P(at least 2 same color) = 37/504 + 66/504
P(at least 2 same color) = 103/504


Therefore, the probability that at least 2 balls are drawn from the same color is 103/504 or approximately 0.203.



嗯,用户给了一个查询,标题是《cat 2020 slot 1 quant》,内容要求用英文解答印度游戏的问题。首先,我需要确认这个标题的具体内容。CAT 2020可能指的是印度管理入学考试(Common Admission Test)的2020年版本,slot 1可能是指考试中的第一个时间段。Quant自然就是 quantitative ability部分了。


接下来,用户提到的是“印度游戏解答”,可能是指某个具体的数学题或者逻辑题,可能是在CAT考试中的题目。但用户没有提供具体的题目内容,所以我需要先假设用户可能遇到了某个问题,需要帮助解答。不过用户可能是在测试我的能力,或者他们可能忘记附上题目。这时候,我需要考虑如何回应。


首先,我应该确认用户是否确实提供了题目,或者是否需要我提供CAT 2020 Quant部分的一般性建议或示例题目解答。如果用户没有给出具体题目,可能需要他们提供更多信息,比如题目内容或具体问题。但根据用户当前的查询,他们可能希望我直接给出一个示例解答,或者解释常见的CAT Quant题型。


考虑到用户要求用英文解答,但我的回答需要用中文,可能需要用英文写出解答过程,或者用中文解释但附上英文版本。不过用户可能希望解答是英文的,但根据指示,我需要用中文回复,所以可能需要用中文写出思考过程,然后在正式回答中用英文呈现解答。


另外,用户提到的“印度游戏”可能是指某种数学游戏或逻辑题,比如排列组合、概率、数论等常见题型。CAT考试中的Quant部分通常包括数据解释与数据分析(DI)、逻辑推理、数量比较、数学运算等。例如,可能涉及的问题类型有:


数据图表分析,如阅读表格或图表并回答问题。
逻辑推理题,涉及排列组合、概率、排列、组合等。
数量比较,比较两个或多个选项的大小。
简单方程或代数问题。
几何问题,如面积、体积、角度计算等。
利润与折扣,百分比问题。
时间与速度,如行程问题。
数论问题,如质数、因数分解、模运算等。


假设用户的问题是关于其中某一题,比如一个排列组合的问题,或者概率题。例如,一个典型的CAT题目可能是:


“某公司有5名员工需要分配到3个部门,每个部门至少有1名员工。有多少种不同的分配方式?”


解答步骤可能包括使用容斥原理或斯特林数。斯特林数S(n,k)表示将n个不同的物体分成k个非空的集合的方式数,然后乘以k!考虑部门的排列。这里n=5,k=3,所以S(5,3)=25,然后乘以3!得到150种方式。但可能需要确认是否正确。


或者,可能是一个概率问题,比如:


“一个 fair six-sided die is rolled twice. What is the probability that the sum of the two rolls is divisible by 4?”


解答:总共有6*6=36种可能的结果。求和为4,8,12的情况。可能的组合包括:


和为4: (1,3), (2,2), (3,1) → 3种


和为8: (2,6), (3,5), (4,4), (5,3), (6,2) →5种


和为12:只有(6,6) →1种


总共有3+5+1=9种,概率为9/36=1/4。


但需要确认是否正确。


不过,由于用户没有提供具体题目,我需要假设一个常见的问题进行解答。或者,可能用户希望我提供CAT Quant部分的总体策略或示例题目解答。


另外,考虑到用户可能希望得到英文解答,但我的回答需要用中文,可能需要用中文描述思考过程,然后在正式回答中用英文写出解答。例如:


思考过程:


用户需要解答CAT 2020 Quant部分的某个题目,但未提供具体内容。可能涉及题型如排列组合、概率、数论等。假设题目为分配员工到部门的问题,解答步骤如下:


确定题目类型:分配问题,每个部门至少1人。
使用斯特林数或容斥原理计算。
斯特林数S(5,3)=25,乘以3!得到150种方式。
确认是否考虑部门不同,是的,所以正确。


解答:


Question: In how many ways can 5 employees be assigned to 3 departments such that each department has at least one employee?


Solution:
This is a problem of distributing distinct objects into distinct boxes with no empty boxes. The formula is S(n,k) × k!, where S(n,k) is the Stirling numbers of the second kind.


For n=5 and k=3:
S(5,3) = 25 (can be calculated using recurrence or formula)
Number of ways = 25 × 3! = 25 × 6 = 150.


Answer: 150.


或者,如果是概率问题:


Question: What is the probability that the sum of two dice rolls is divisible by 4?


Solution:
Total outcomes = 6×6=36.
Favorable outcomes: sums 4,8,12.
Sum 4: 3 ways
Sum 8:5 ways
Sum12:1 way
Total favorable=9
Probability=9/36=1/4.


Answer: 1/4.


但需要根据实际题目调整。由于用户没有给出具体问题,可能需要进一步询问,但根据指示,可能需要直接提供示例解答。因此,可能需要选择一个典型的CAT Quant问题进行解答,并用英文呈现,同时用中文解释思考过程。




Title: CAT 2020 Slot 1 Quant - Sample Problem & Solution


Problem Statement (Hypothetical Example):

A company needs to assign 5 distinct employees to 3 different departments such that each department has at least one employee. How many ways can this be done?




Solution:

This is a combinatorial problem involving distributing distinct objects into distinct groups with non-empty constraints.



Identify the Method:

Use the Stirling numbers of the second kind ((S(n, k))), which count the ways to partition (n) distinct objects into (k) non-empty subsets. Multiply by (k!) to account for the order of departments.



Calculate (S(5, 3)):

The Stirling number (S(5, 3)) can be computed using the recurrence:

[
S(n, k) = k \cdot S(n-1, k) + S(n-1, k-1)
]

For (S(5, 3)):


(S(5, 3) = 3 \cdot S(4, 3) + S(4, 2))
(S(4, 3) = 6), (S(4, 2) = 7) (precomputed values)
(S(5, 3) = 3 \cdot 6 + 7 = 25).



Multiply by (k!):

[
25 \times 3! = 25 \times 6 = 150.
]






Answer:

(\boxed{150})


Key Takeaways for CAT Quant:


Combinatorics: Master Stirling numbers, permutations, and inclusion-exclusion.
Time Management: Such problems require quick recall of formulas (e.g., (S(n, k))).
Practice Variations: Expect similar questions with different values (e.g., (n=6), (k=4)).


Let me know if you need further clarification or additional examples!
like (0)
deltin55administrator

Post a reply

loginto write comments

Previous / Next

Previous threads: flip slot Next threads: online casino software development

Explore interesting content

deltin55

He hasn't introduced himself yet.

110K

Threads

12

Posts

410K

Credits

administrator

Credits
46055